Important Applications on Linear Congruence

Find answers, guides, and helpful information in our knowledge base.

Important Applications

Linear Congruence is a key concept in Number Theory with wide-ranging applications in both theoretical and applied mathematics. This section focuses on the most important applications of Linear Congruence, including solving modular equations, cryptographic algorithms, and number-based problem-solving techniques. With step-by-step examples and real-world scenarios, this guide helps students understand how Linear Congruence is used in practice. Perfect for competitive exam preparation and academic learning, these applications enhance conceptual clarity and problem-solving skills.

Solve the linear congruence \( 3x \equiv 60 \pmod{98} \) using the Chinese Remainder Theorem without using modular inverse.

Answer:

We are given:

\[ 3x \equiv 60 \pmod{98} \]

Since \( 98 = 2 \cdot 49 \), we solve the congruence modulo 2 and modulo 49 separately.

Step 1: Solve modulo 2
\[ \begin{align*} &3x \equiv 60 \pmod{2} \\ \Rightarrow \quad & x \equiv 0 \pmod{2} \\ \Rightarrow \quad & x = 2k,\quad k \in \mathbb{Z} \end{align*} \]
Step 2: Substitute into modulo 49
\[ \begin{align*} & 3x \equiv 60 \pmod{49} \\ \Rightarrow \quad & 3(2k) \equiv 60 \pmod{49} \\ \Rightarrow \quad & 6k \equiv 11 \pmod{49} \quad (\text{since } 60 \equiv 11 \pmod{49}) \end{align*} \]
Step 3: Solve the linear congruence \( 6k \equiv 11 \pmod{49} \)

We convert this into a linear Diophantine equation:

\[ 6k - 49m = 11 \]

Use the Extended Euclidean Algorithm:

\[ \begin{align*} & 49 = 8 \cdot 6 + 1 \\ \Rightarrow \quad & 1 = 49 - 8 \cdot 6 \\ \Rightarrow \quad & 1 = (-8) \cdot 6 + 1 \cdot 49 \\ \Rightarrow \quad & 11 = (-8 \cdot 11) \cdot 6 + (11 \cdot 49) \\ \Rightarrow \quad & 11 = (-88) \cdot 6 + 11 \cdot 49 \\ \Rightarrow \quad & 11 \equiv (-88) \cdot 6 \pmod{49} \\ \Rightarrow \quad & 6k \equiv (-88) \cdot 6 \pmod{49} \quad \text{since} \quad 6k \equiv 11 \pmod{49} \\ \Rightarrow \quad & k \equiv (-88) \pmod{49} \quad \text{since} \quad \gcd(6,49) = 1 \\ \Rightarrow \quad & k \equiv 10 \pmod{49} \quad \text{since} \quad -88 \equiv 10 \pmod{49} \end{align*} \]

Therefore:

\[ \begin{align*} k &= 10 + 49t \\ x &= 2k = 2(10 + 49t) = 20 + 98t \end{align*} \]

Hence:

\[ \boxed{x \equiv 20 \pmod{98}} \]