Linear Congruence is a key concept in Number Theory with wide-ranging applications in both theoretical and applied mathematics. This section focuses on the most important applications of Linear Congruence, including solving modular equations, cryptographic algorithms, and number-based problem-solving techniques. With step-by-step examples and real-world scenarios, this guide helps students understand how Linear Congruence is used in practice. Perfect for competitive exam preparation and academic learning, these applications enhance conceptual clarity and problem-solving skills.
Answer:
We are given:
\[
3x \equiv 60 \pmod{98}
\]
Since \( 98 = 2 \cdot 49 \), we solve the congruence modulo 2 and modulo 49 separately.
Step 1: Solve modulo 2
\[
\begin{align*}
&3x \equiv 60 \pmod{2} \\
\Rightarrow \quad & x \equiv 0 \pmod{2} \\
\Rightarrow \quad & x = 2k,\quad k \in \mathbb{Z}
\end{align*}
\]
Step 2: Substitute into modulo 49
\[
\begin{align*}
& 3x \equiv 60 \pmod{49} \\
\Rightarrow \quad & 3(2k) \equiv 60 \pmod{49} \\
\Rightarrow \quad & 6k \equiv 11 \pmod{49} \quad (\text{since } 60 \equiv 11 \pmod{49})
\end{align*}
\]
Step 3: Solve the linear congruence \( 6k \equiv 11 \pmod{49} \)
We convert this into a linear Diophantine equation:
\[
6k - 49m = 11
\]
Use the Extended Euclidean Algorithm:
\[
\begin{align*}
& 49 = 8 \cdot 6 + 1 \\
\Rightarrow \quad & 1 = 49 - 8 \cdot 6 \\
\Rightarrow \quad & 1 = (-8) \cdot 6 + 1 \cdot 49 \\
\Rightarrow \quad & 11 = (-8 \cdot 11) \cdot 6 + (11 \cdot 49) \\
\Rightarrow \quad & 11 = (-88) \cdot 6 + 11 \cdot 49 \\
\Rightarrow \quad & 11 \equiv (-88) \cdot 6 \pmod{49} \\
\Rightarrow \quad & 6k \equiv (-88) \cdot 6 \pmod{49} \quad \text{since} \quad 6k \equiv 11 \pmod{49} \\
\Rightarrow \quad & k \equiv (-88) \pmod{49} \quad \text{since} \quad \gcd(6,49) = 1 \\
\Rightarrow \quad & k \equiv 10 \pmod{49} \quad \text{since} \quad -88 \equiv 10 \pmod{49}
\end{align*}
\]
Therefore:
\[
\begin{align*}
k &= 10 + 49t \\
x &= 2k = 2(10 + 49t) = 20 + 98t
\end{align*}
\]
Hence:
\[
\boxed{x \equiv 20 \pmod{98}}
\]