Important Applications on Linear Cipher

Find answers, guides, and helpful information in our knowledge base.

Important Applications

The Linear Cipher is a foundational encryption technique with several important applications in the field of cryptography and information security. This topic highlights how the Linear Cipher is used to protect data, enhance privacy, and ensure secure communication in various digital systems. From encoding simple messages to laying the groundwork for more advanced encryption methods, these applications show its relevance in both academic learning and real-world cybersecurity. With clear explanations and practical scenarios, this guide helps learners understand the significance of the Linear Cipher in modern encryption.

Decrypt the message “RXQTGU HOZTKGH FJ KTMMTG” which was encrypted using the linear cipher

\[ C = (3P + 7) \mod 26. \]

Answer:

To decrypt the given linear cipher without using modular inverses, we proceed by computing all possible plaintext values \( P \in \{0, 1, \dots, 25\} \) and corresponding ciphertext values using the encryption formula:

\[ C = (3P + 7) \mod 26. \]

We compute each \( C \) value for every \( P \):

\[ \begin{array}{|c|c|c|c|c|} \hline \text{Letter (P)} & P & C = (3P + 7) \pmod{26} & \text{C (number)} & \text{Cipher Letter (C)} \\ \hline A & 0 & 3(0) + 7 = 7\mod 26 & 7 & H \\ B & 1 & 3(1) + 7 = 10\mod 26 & 10 & K \\ C & 2 & 3(2) + 7 = 13\mod 26 & 13 & N \\ D & 3 & 3(3) + 7 = 16\mod 26 & 16 & Q \\ E & 4 & 3(4) + 7 = 19\mod 26 & 19 & T \\ F & 5 & 3(5) + 7 = 22\mod 26 & 22 & W \\ G & 6 & 3(6) + 7 = 25\mod 26 & 25 & Z \\ H & 7 & 3(7) + 7 = 28\mod 26 & 2 & C \\ I & 8 & 3(8) + 7 = 31\mod 26 & 5 & F \\ J & 9 & 3(9) + 7 = 34\mod 26 & 8 & I \\ K & 10 & 3(10) + 7 = 37\mod 26 & 11 & L \\ L & 11 & 3(11) + 7 = 40\mod 26 & 14 & O \\ M & 12 & 3(12) + 7 = 43\mod 26 & 17 & R \\ N & 13 & 3(13) + 7 = 46\mod 26 & 20 & U \\ O & 14 & 3(14) + 7 = 49\mod 26 & 23 & X \\ P & 15 & 3(15) + 7 = 52\mod 26 & 0 & A \\ Q & 16 & 3(16) + 7 = 55\mod 26 & 3 & D \\ R & 17 & 3(17) + 7 = 58\mod 26 & 6 & G \\ S & 18 & 3(18) + 7 = 61\mod 26 & 9 & J \\ T & 19 & 3(19) + 7 = 64\mod 26 & 12 & M \\ U & 20 & 3(20) + 7 = 67\mod 26 & 15 & P \\ V & 21 & 3(21) + 7 = 70\mod 26 & 18 & S \\ W & 22 & 3(22) + 7 = 73\mod 26 & 21 & V \\ X & 23 & 3(23) + 7 = 76\mod 26 & 24 & Y \\ Y & 24 & 3(24) + 7 = 79\mod 26 & 1 & B \\ Z & 25 & 3(25) + 7 = 82\mod 26 & 4 & E \\ \hline \end{array} \]

Decrypt each letter in the message.

Given ciphertext: “RXQTGU HOZTKGH FJ KTMMTG”

We decode word by word:

RXQTGU → R (12) M, X (14) O, Q (3) D, T (4) E, G (17) R, U (13) N → MODERN

HOZTKGH → H (0) A, O (11) L, Z (6) G, T (4) E, K (1) B, G (17) R, H (0) A → ALGEBRA

FJ → F (8) I, J (18) S → IS

KTMMTG → K (1) B, T (4) E, M (19) T, M (19) T, T (4) E, G (17) R → BETTER

Final Decrypted Message:

\[ \boxed{\text{MODERN ALGEBRA IS BETTER}} \]